本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:【j2开奖】诺奖得主尤金·维格纳:数学在自然科学中不合理的有效性(上)

时间:2017-01-10 18:09来源:报码现场 作者:www.wzatv.cc 点击:
维格纳 也许这里还有一些尚待发掘的奥秘。——普尔斯(Charles S. Peirce) 有一个故事是关于两位昔日高中同窗聊起彼此的工作。其中一人成了统计学家,正专研人口趋势。他把一篇论

  

码报:【j2开奖】诺奖得主尤金·维格纳:数学在自然科学中不合理的有效性(上)

  维格纳

  也许这里还有一些尚待发掘的奥秘。——普尔斯(Charles S. Peirce)

  有一个故事是关于两位昔日高中同窗聊起彼此的工作。其中一人成了统计学家,正专研人口趋势。他把一篇论文拿给老同学看,这篇论文按惯例从高斯分布开始说起,统计学家向老同学解释用于实际人口数、平均人口数等等的符号意涵。老同学显得有些迟疑,不太确定这位统计学家是否在唬弄他。他问说:「你怎么知道是那样?那这边这个符号是什么?」 。统计学家说:「噢,这是π。」「π是什么?」「圆的周长对直径的比率。」老同学说:「哇,你玩笑开得太过头了,人口怎么会跟圆周长有关系!」

  我们很自然的会莞尔于这位老同学思路的单纯。然而我必须承认,当听到这个故事时,我心中油然生起异样之感,因为故事中这位同学的反应,流露的不过是直白的常理。但更让我纳闷的是,后来没过多久有人找我讨论一个疑惑(注:此人是当时就读于普林斯顿的维纳(F. Werner)),亦即当我们测试理论时,只选用了很小范围的数据。他说:「如果我们建构理论时,根据的是现在忽略的现象,并且忽略一些现在关注的现象,我们怎么知道会不会建构出与现在理论大相迳庭、但对现象却有同等解释效力的另一理论?」 的确要承认,我们没有明确的证据判定不会有这样的理论。

  以上两个故事呈显了两个重点,亦即这篇论文的主题。首先,数学概念在全然意料外的脉络中出现,而且通常很出乎意料的,能够缜密且精确的描述这方面的现象。其次,正因为这种状况,也因为我们不理解数学如此有用的个中缘由,我们无法知道一个用数学概念表述的理论是否唯一合适的理论。我们的状况就像是手里握着一串钥匙、需要连续打开数道门的人,当他总是试一、两次就找对钥匙,不免开始怀疑钥匙与门锁之间是否有唯一的对应关系。

  以下要说的大部分并无新意,大多数科学家可能都曾以某种方式想到过。我的主要目的是从几个面向去阐明。第一,数学在自然科学中巨大的有用性几近神秘,找不出合理解释;第二,正是数学概念如此不可思议的有用性,促使我们注意物理理论唯一性的问题。为了建立第一个论点,亦即数学在物理学中扮演了异常重要的角色,我们有必要先谈谈「什么是数学?」接著再谈谈「什么是物理学?」然后再谈谈数学如何跨入物理理论,最后则是,数学在物理学中角色的成功为何如此令人费解。关于第二点,物理理论的唯一性,在此将不多着墨。要想对这问题给出适切的答案,还需要进行周密的实验性与理论性研究,而这类研究目前还未展开。

  数学是什么?

  曾有人说哲学是为了要滥用而发明的术语(注:引自杜比斯列夫(W. Dubislav)之《当代数学哲学》(Die Philosophie der Mathematik in der Gegenwart)(1932))。沿此脉络,我会说数学是为了有技巧的运用概念与规则而发明的科学;主要强调的是概念的发明。如果数学定理都必须出自公理中已出现的概念,那么有趣的数学定理很快就会告罄。再者,虽说初等数学,尤其是初等几何的建构,无疑是为了要描述真实世界的对象,但是更高等的数学概念则未必如此,尤其是那些在物理学中扮演重要角色的数学概念。准此,整数对的运算规则,显然是被设计成与分数运算的结果相同,即使我们初学分数时并未提到「数对」 。用于数列的运算规则则对应到无理数,这个运算仍然隶属于重现已知的数量运算规则的范畴。然而大部分更高深的数学概念,诸如复数、代数、线性算子、伯瑞尔集合(Borel sets)——类似例子是无穷无尽的——则是数学家设想出来,以做为展现其巧思与形式美感的主题。事实上,数学家定义这些概念时,即已知道可对其运用有趣且精妙的构思,这正是数学家深具巧思的首要明证。创造数学概念所需的思考深度,则可展现在日后运用这些概念之技巧需求。伟大的数学家堪堪走在容许的界限上,在可行的范围内充分且近乎果决的尽情驰骋。然而这样奔放的思路并未让他们陷入矛盾的困境,光这件事本身就是奇迹。我们很难相信单凭达尔文的天择过程,人类的推理能力即可演化到如此完美的程度。然而,这并不是我们目前要谈的主题。在此强调,而且后面还要重温的重点是,直播,数学家若未定义公理之外的概念,则他仅能建立起寥寥可数的有趣定理;而数学家之所以定义这些公理之外的概念,则是着眼于能对它们运用巧妙的逻辑运算,使得运算本身以及由此可得的普遍性与简洁性,都可满足我们的美感(注:博兰尼在其《 个人知识》( Personal Knowledge)(1958)中曾说:「所有的这些困难不过是由于我们拒绝去明白,若不承认数学最明显的特徵即它很有趣,则数学便无法定义。」( 188页))

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容